Trends Plant Sci , IF:18.313 , 2023 Oct doi: 10.1016/j.tplants.2023.10.010
Mutual dependence of brassinosteroid homeostasis and plasmodesmata permeability.
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.; Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland. Electronic address: damian.gruszka@us.edu.pl.
Brassinosteroids (BRs) are exceptional phytohormones: they do not undergo a long-distance transport between plant organs. However, the mechanism of short-distance (intercellular) transport of BRs remains poorly understood. Recently, Wang et al. provided a novel insight into the mutual dependence of BR homeostasis, their intercellular transport, and plasmodesmata permeability.
PMID: 37919125
Trends Plant Sci , IF:18.313 , 2023 Dec , V28 (12) : P1337-1339 doi: 10.1016/j.tplants.2023.08.014
BTL2 phospho-switch surveils plant immunity.
Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China.; National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.; National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China. Electronic address: wuliuji@henau.edu.cn.; Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China. Electronic address: ymwang@njau.edu.cn.
BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor involved in the recognition of pattern-associated molecular patterns (PAMPs) via plasma membrane-localized pattern recognition receptors (PRRs). Absence of BAK1/SERK4 leads to the activation of autoimmunity in plants. Yu et al. recently showed that BAK-TO-LIFE 2 (BTL2) is required for the surveillance of BAK1/SERK4 integrity to maintain immune homeostasis.
PMID: 37690906
Trends Plant Sci , IF:18.313 , 2023 Nov , V28 (11) : P1208-1210 doi: 10.1016/j.tplants.2023.07.010
Single cell RNA-seq in phytohormone signaling: a promising future.
College of Agriculture, South China Agriculture University, Guangzhou, Guangdong 510642, China.; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia.; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia. Electronic address: rajeev.varshney@murdoch.edu.au.; Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China. Electronic address: liuhao@gdaas.cn.
Phytohormone signaling regulates plant growth and development. Single cell RNA sequencing (scRNA-seq) provides unprecedented opportunities to decipher hormone-mediated spatiotemporal gene regulatory networks. In a recent study, Nolan et al. used time-series scRNA-seq to identify the cortex as a key site for brassinosteroid (BR)-mediated gene expression and revealed a signaling network during cell phase transition.
PMID: 37550122
Nat Chem Biol , IF:15.04 , 2023 Nov , V19 (11) : P1331-1341 doi: 10.1038/s41589-023-01346-x
Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones.
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.; Center for Plant Systems Biology, VIB, Ghent, Belgium.; Laboratoire de Biogenese Membranaire, Unite Mixte de Recherche 5200, Universite de Bordeaux, Centre National de la Recherche Scientifique, Villenave d'Ornon, France.; Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.; Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.; Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacky University, Olomouc, Czech Republic.; Faculty of Science, Hokkaido University, Sapporo, Japan.; Department of Biology, Duke University, Durham, NC, USA.; Howard Hughes Medical Institute, Duke University, Durham, NC, USA.; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. nemanja.vukasinovic@psb.vib-ugent.be.; Center for Plant Systems Biology, VIB, Ghent, Belgium. nemanja.vukasinovic@psb.vib-ugent.be.; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. eurus@psb.vib-ugent.be.; Center for Plant Systems Biology, VIB, Ghent, Belgium. eurus@psb.vib-ugent.be.
Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.
PMID: 37365405
New Phytol , IF:10.151 , 2023 Nov , V240 (3) : P1066-1081 doi: 10.1111/nph.19204
OsbHLH92, in the noncanonical brassinosteroid signaling pathway, positively regulates leaf angle and grain weight in rice.
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.; College of Bioscience and Bioengineering, Hebei University of Science and Technology, Hebei, 050000, China.
Modifications of plant architecture can increase planting density, regulate photosynthesis, and improve crop yields. Many basic helix-loop-helix (bHLH) transcription factors participate in the brassinosteroid (BR) signaling pathway and are critical for plant architecture morphogenesis in rice. However, the number of identified bHLH genes suitable for improving production value is still limited. In this study, we cloned Lam1, encoding the typical bHLH transcription factor OsbHLH92. OsbHLH92 knockout (KO) lines exhibit erect leaves. Decreases in the number and size of parenchyma cell layers on the adaxial side of the lamina joint in KO lines were the main reason for the decreased leaf angle. Genetic experiments verify that OsBU1 and its homologs are downstream of OsbHLH92, which is involved in the noncanonical RGA1-mediated BR signaling pathway. OsbHLH91, an OsbHLH92 homolog, plays both conserved and differentiated roles relative to OsbHLH92. Notably, OsbHLH92-KO lines show erect leaves without the acquisition of adverse agronomic traits. Moreover, by driving a specific panicle promoter, OsbHLH92 can greatly increase productivity by at least 10%. This study identifies new components of the BR signaling pathway, demonstrates the importance of OsbHLH92 in improving planting density and crop productivity, and broadens our knowledge of typical and atypical bHLH family members in rice.
PMID: 37574840
Plant Cell Environ , IF:7.228 , 2023 Nov doi: 10.1111/pce.14758
Far-red light inhibits lateral bud growth mainly through enhancing apical dominance independently of strigolactone synthesis in tomato.
Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China.; Hainan Institute, Zhejiang University, Sanya, People's Republic of China.; Agricultural Experiment Station, Zhejiang University, Hangzhou, People's Republic of China.
The ratio of red light to far-red light (R:FR) is perceived by light receptors and consequently regulates plant architecture. Regulation of shoot branching by R:FR ratio involves plant hormones. However, the roles of strigolactone (SL), the key shoot branching hormone and the interplay of different hormones in the light regulation of shoot branching in tomato (Solanum lycopersicum) are elusive. Here, we found that defects in SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and CCD8 in tomato resulted in more lateral bud growth but failed to reverse the FR inhibition of lateral bud growth, which was associated with increased auxin synthesis and decreased synthesis of cytokinin (CK) and brassinosteroid (BR). Treatment of auxin also inhibited shoot branching in ccd mutants. However, CK released the FR inhibition of lateral bud growth in ccd mutants, concomitant with the upregulation of BR synthesis genes. Furthermore, plants that overexpressed BR synthesis gene showed more lateral bud growth and the shoot branching was less sensitive to the low R:FR ratio. The results indicate that SL synthesis is dispensable for light regulation of shoot branching in tomato. Auxin mediates the response to R:FR ratio to regulate shoot branching by suppressing CK and BR synthesis.
PMID: 37916615
Plant J , IF:6.417 , 2023 Nov doi: 10.1111/tpj.16527
Comparative analysis of BZR1/BES1 family transcription factors in Arabidopsis.
Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea.; Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea.; The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.; Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea.; School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
Brassinazole Resistant 1 (BZR1) and bri1 EMS Suppressor 1 (BES1) are key transcription factors that mediate brassinosteroid (BR)-responsive gene expression in Arabidopsis. The BZR1/BES1 family is composed of BZR1, BES1, and four BES1/BZR1 homologs (BEH1-BEH4). However, little is known about whether BEHs are regulated by BR signaling in the same way as BZR1 and BES1. We comparatively analyzed the functional characteristics of six BZR1/BES1 family members and their regulatory mechanisms in BR signaling using genetic and biochemical analyses. We also compared their subcellular localizations regulated by the phosphorylation status, interaction with GSK3-like kinases, and heterodimeric combination. We found that all BZR1/BES1 family members restored the phenotypic defects of bri1-5 by their overexpression. Unexpectedly, BEH2-overexpressing plants showed the most distinct phenotype with enhanced BR responses. RNA-Seq analysis indicated that overexpression of both BZR1 and BEH2 regulates BR-responsive gene expression, but BEH2 has a much greater proportion of BR-independent gene expression than BZR1. Unlike BZR1 and BES1, the BR-regulated subcellular translocation of the four BEHs was not tightly correlated with their phosphorylation status. Notably, BEH1 and BEH2 are predominantly localized in the nucleus, which induces the nuclear accumulation of other BZR1/BES1 family proteins through heterodimerization. Altogether, our comparative analyses suggest that BEH1 and BEH2 play an important role in the functional interaction between BZR1/BES1 family transcription factors.
PMID: 37926922
Int J Mol Sci , IF:5.923 , 2023 Nov , V24 (22) doi: 10.3390/ijms242216415
Environmental Stimuli and Phytohormones in Anthocyanin Biosynthesis: A Comprehensive Review.
State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
Anthocyanin accumulation in plants plays important roles in plant growth and development, as well as the response to environmental stresses. Anthocyanins have antioxidant properties and play an important role in maintaining the reactive oxygen species (ROS) homeostasis in plant cells. Furthermore, anthocyanins also act as a "sunscreen", reducing the damage caused by ultraviolet radiation under high-light conditions. The biosynthesis of anthocyanin in plants is mainly regulated by an MYB-bHLH-WD40 (MBW) complex. In recent years, many new regulators in different signals involved in anthocyanin biosynthesis were identified. This review focuses on the regulation network mediated by different environmental factors (such as light, salinity, drought, and cold stresses) and phytohormones (such as jasmonate, abscisic acid, salicylic acid, ethylene, brassinosteroid, strigolactone, cytokinin, and auxin). We also discuss the potential application value of anthocyanin in agriculture, horticulture, and the food industry.
PMID: 38003605
Int J Mol Sci , IF:5.923 , 2023 Nov , V24 (22) doi: 10.3390/ijms242216405
Identification of Functional Brassinosteroid Receptor Genes in Oaks and Functional Analysis of QmBRI1.
College of Forestry, Shenyang Agricultural University, Shenyang 110866, China.; Key Laboratory for Silviculture of Liaoning Province, Shenyang 110866, China.
Brassinosteroids (BRs) play important regulatory roles in plant growth and development, with functional BR receptors being crucial for BR recognition or signaling. Although functional BR receptors have been extensively studied in herbaceous plants, they remain largely under-studied in forest tree species. In this study, nine BR receptors were identified in three representative oak species, of which BRI1s and BRL1s were functional BR receptors. Dispersed duplications were a driving force for oak BR receptor expansion, among which the Brassinosteroid-Insensitive-1 (BRI1)-type genes diverged evolutionarily from most rosids. In oak BRI1s, we identified that methionine in the conserved Asn-Gly-Ser-Met (NGSM) motif was replaced by isoleucine and that the amino acid mutation occurred after the divergence of Quercus and Fagus. Compared with QmBRL1, QmBRI1 was relatively highly expressed during BR-induced xylem differentiation and in young leaves, shoots, and the phloem and xylem of young stems of Quercus mongolica. Based on Arabidopsis complementation experiments, we proved the important role of QmBRI1 in oak growth and development, especially in vascular patterning and xylem differentiation. These findings serve as an important supplement to the findings of the structural, functional and evolutionary studies on functional BR receptors in woody plants and provide the first example of natural mutation occurring in the conserved BR-binding region (NGSM motif) of angiosperm BRI1s.
PMID: 38003597
Int J Mol Sci , IF:5.923 , 2023 Nov , V24 (22) doi: 10.3390/ijms242216087
StBIN2 Positively Regulates Potato Formation through Hormone and Sugar Signaling.
College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.; Potato Research and Development Center, Sichuan Agricultural University, Chengdu 611130, China.
Potato is an important food crop worldwide. Brassinosteroids (BRs) are widely involved in plant growth and development, and BIN2 (brassinosteroid insensitive 2) is the negative regulator of their signal transduction. However, the function of BIN2 in the formation of potato tubers remains unclear. In this study, transgenic methods were used to regulate the expression level of StBIN2 in plants, and tuber related phenotypes were analyzed. The overexpression of StBIN2 significantly increased the number of potatoes formed per plant and the weight of potatoes in transgenic plants. In order to further explore the effect of StBIN2 on the formation of potato tubers, this study analyzed BRs, ABA hormone signal transduction, sucrose starch synthase activity, the expression levels of related genes, and interacting proteins. The results show that the overexpression of StBIN2 enhanced the downstream transmission of ABA signals. At the same time, the enzyme activity of the sugar transporter and the expression of synthetic genes were increased in potato plants overexpressing StBIN2, which also demonstrated the upregulation of sucrose and the expression of the starch synthesis gene. Apparently, StBIN2 affected the conversion and utilization of key substances such as glucose, sucrose, and starch in the process of potato formation so as to provide a material basis and energy preparation for forming potatoes. In addition, StBIN2 also promoted the expression of the tuber formation factors StSP6A and StS6K. Altogether, this investigation enriches the study on the mechanism through which StBIN2 regulates potato tuber formation and provides a theoretical basis for achieving a high and stable yield of potato.
PMID: 38003283
J Biol Chem , IF:5.157 , 2023 Nov : P105456 doi: 10.1016/j.jbc.2023.105456
Resolving Binding Pathways and Solvation Thermodynamics of Plant Hormone Receptors.
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. Electronic address: diwakar@illinois.edu.
Plant hormones are small molecules that regulate plant growth, development, and responses to biotic and abiotic stresses. They are specifically recognized by the binding site of their receptors. In this work, we resolved the binding pathways for eight classes of phytohormones (auxin, jasmonate, gibberellin, strigolactone, brassinosteroid, cytokinin, salicylic acid, and abscisic acid) to their canonical receptors using extensive molecular dynamics simulations. Furthermore, we investigated the role of water displacement and reorganization at the binding site of the plant receptors through inhomogeneous solvation theory. Our findings predict that displacement of water molecules by phytohormones contributes to free energy of binding via entropy gain and is associated with significant free energy barriers for most systems analyzed. Also, our results indicate that displacement of unfavorable water molecules in the binding site can be exploited in rational agrochemical design. Overall, this study uncovers the mechanism of ligand binding and the role of water molecules in plant hormone perception, which creates new avenues for agrochemical design to target plant growth and development.
PMID: 37949229
Pest Manag Sci , IF:4.845 , 2023 Nov doi: 10.1002/ps.7854
Protective mechanisms of neral as a plant-derived safener against fenoxaprop-p-ethyl injury in rice.
Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China.
BACKGROUND: The use of herbicide safeners effectively minimises crop damage while maintaining the full efficacy of herbicides. The present study aimed to assess the potential protective effects of neral (NR) as a safener, in order to mitigate injury caused by fenoxaprop-p-ethyl (FE) on rice. RESULTS: The alleviating effect of NR was similar to that of the safener isoxadifen-ethyl (IE). The root elongation of rice was significantly promoted under the FE + NR and FE + IE treatments, as compared to the FE treatment. The transcriptome analysis further suggested that the effects of NR treatment on plant metabolic pathways differed from those of IE treatment. In total, 895 and 47 up-differentially expressed genes induced by NR (NR-inducible genes) and IE (IE-inducible genes) were identified. NR-inducible genes were mainly enriched in phytohormone synthesis and signalling response, including 'response to brassinosteroid', 'response to jasmonic acid', 'response to ethylene', 'brassinosteroid metabolic process', 'brassinosteroid biosynthesis' and 'plant hormone signal transduction'. In contrast, IE-inducible genes were predominantly enriched in glutathione metabolism. The activity of glutathione S-transferase was found to be increased after IE treatment, whereas no significant increase was observed following NR treatment. Moreover, several transcription factor genes, such as those encoding AP2/ERF-ERF and (basic helix-loop-helix) bHLH were found to be significantly induced by NR treatment. CONCLUSION: This is the first report of the utilisation of NR as an herbicide safener. The results of this study suggest the toxicity of FE to rice is mitigated by NR through a distinct mechanism compared to IE. (c) 2023 Society of Chemical Industry.
PMID: 37940406
Sci Rep , IF:4.379 , 2023 Oct , V13 (1) : P18729 doi: 10.1038/s41598-023-45163-7
Morphological, physio-biochemical, and molecular indications of heat stress tolerance in cucumber.
Cross-Pollinated Vegetables Research Department, Horticultural Research Institute, Agricultural Research Center, Giza, 12619, Egypt. emanelrmaly@arc.sci.eg.
Global warming is a critical challenge limiting crop productivity. Heat stress during cucumber growing stages caused deterioration impacts on the flowering, fruit, and yield stages. In this study, "inbred line 1 and hybrid P1 x P2" (heat-tolerant) and "Barracuda" (heat-sensitive) were utilized to determine the heat tolerance in summer season. The heat injury index was used to exhibit the heat tolerance performance. The heat injury index for heat tolerant (HT) genotypes, on leaves (HIIL%) and female flowers (HIIF%), was less than 25 and 15 % in HT, compared to heat sensitive (HS) was more than 75 and 85%, respectively. Moreover, the content of leaf chlorophyll, proline, brassinosteroid (BRs), abscisic acid content (ABA), the activity of catalase (CAT, EC 1.11. 1.6), peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) increased with the heat stress responses in HT plants. Expression pattern analyses of eight genes, related to POD (CSGY4G005180 and CSGY6G015230), SOD (CSGY4G010750 and CSGY1G026400), CAT (CsGy4G025230 and CsGy4G025240), and BR (CsGy6G029150 and CsGy6G004930) showed a significant increase in HT higher than in HS plants. This study furnishes valuable markers for heat tolerance genotypes breeding in cucumber and provides a basis for understanding heat-tolerance mechanisms.
PMID: 37907590
Plant Mol Biol , IF:4.076 , 2023 Nov doi: 10.1007/s11103-023-01383-z
Transcriptome analysis reveals the effect of acidic environment on adventitious root differentiation in Camellia sinensis.
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering/College of Tea Sciences, Guizhou University, Guiyang, 550025, China.; Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering/College of Tea Sciences, Guizhou University, Guiyang, 550025, China. yczhao@gzu.edu.cn.; Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering/College of Tea Sciences, Guizhou University, Guiyang, 550025, China. dgzhao@gzu.edu.cn.; Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China. dgzhao@gzu.edu.cn.
The generation of adventitious roots (ARs) is the key to the success of cuttings. The appropriate environment for AR differentiation in tea plants is acidic. However, the mechanism is unclear. In this study, pH 4.5 was suitable condition for the differentiation of AR in tea plants. At the base of cuttings, the root primordia differentiated ARs more rapidly at pH 4.5 than pH 7.0, and nine AR differentiation-related genes were found to be differentially expressed in 30 days, the result was also validated by qRT-PCR. The promoter regions of these genes contained auxin and brassinosteroid response elements. The expression levels of several genes which were involved in auxin and brassinosteroid synthesis as well as signaling at pH 4.5 compared to pH 7.0 occurred differential expression. Brassinolide (BL) and indole-3-acetic acid (IAA) could affect the differentiation of ARs under pH 4.5 and pH 7.0. By qRT-PCR analysis of genes during ARs generation, BL and IAA inhibited and promoted the expression of CsIAA14 gene, respectively, to regulate auxin signal transduction. Meanwhile, the expression levels of CsKNAT4, CsNAC2, CsNAC100, CsWRKY30 and CsLBD18 genes were up-regulated upon auxin treatment and were positively correlated with ARs differentiation.This study showed that pH 4.5 was the most suitable environment for the root primordia differentiation of AR in tea plant. Proper acidic pH conditions promoted auxin synthesis and signal transduction. The auxin initiated the expression of AR differentiation-related genes, and promoted its differentiated. BL was involved in ARs formation and elongation by regulating auxin signal transduction.
PMID: 37973765
Plant Reprod , IF:3.767 , 2023 Nov doi: 10.1007/s00497-023-00485-4
Factors specifying sex determination in maize.
Laboratorio Nacional de Genomica para la Biodiversidad (LANGEBIO), Unidad de Genomica Avanzada, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV), 36821, Irapuato, Mexico.; Laboratorio Nacional de Genomica para la Biodiversidad (LANGEBIO), Unidad de Genomica Avanzada, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV), 36821, Irapuato, Mexico. jazmin.abraham@cinvestav.mx.
Plant architecture is an important feature for agronomic performance in crops. In maize, which is a monoecious plant, separation of floral organs to produce specific gametes has been studied from different perspectives including genetic, biochemical and physiological. Maize mutants affected in floral organ development have been key to identifying genes, hormones and other factors like miRNAs important for sex determination. In this review, we describe floral organ formation in maize, representative mutants and genes identified with a function in establishing sexual identity either classified as feminizing or masculinizing, and its relationship with hormones associated with sexual organ identity as jasmonic acid, brassinosteroid and gibberellin. Finally, we discuss the challenges and scopes of future research in maize sex determination.
PMID: 37966579
J Plant Physiol , IF:3.549 , 2023 Nov , V291 : P154126 doi: 10.1016/j.jplph.2023.154126
Medium-chain-length polyprenol (C45-C55) formation in chloroplasts of Arabidopsis is brassinosteroid-dependent.
Institute of Biology, Warsaw University of Life Sciences, ul. Nowoursynowska 159, bldg. 37, 02-776, Warsaw, Poland. Electronic address: malgorzata_gutkowska-stronkowska@sggw.edu.pl.; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.; Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland.
Brassinosteroids are important plant hormones influencing, among other processes, chloroplast development, the electron transport chain during light reactions of photosynthesis, and the Calvin-Benson cycle. Medium-chain-length polyprenols built of 9-11 isoprenoid units (C45-C55 carbons) are a class of isoprenoid compounds present in abundance in thylakoid membranes. They are synthetized in chloroplast by CPT7 gene from Calvin cycle derived precursors on MEP (methylerythritol 4-phosphate) isoprenoid biosynthesis pathway. C45-C55 polyprenols affect thylakoid membrane ultra-structure and hence influence photosynthetic apparatus performance in plants such as Arabidopsis and tomato. So far nothing is known about the hormonal or environmental regulation of CPT7 gene expression. The aim of our study was to find out if medium-chain-length polyprenol biosynthesis in plants may be regulated by hormonal cues.We found that the CPT7 gene in Arabidopsis has a BZR1 binding element (brassinosteroid dependent) in its promoter. Brassinosteroid signaling mutants in Arabidopsis accumulate a lower amount of medium-chain-length C45-C55 polyprenols than control plants. At the same time carotenoid and chlorophyll content is increased, and the amount of PsbD1A protein coming from photosystem II does not undergo a significant change. On contrary, treatment of WT plants with epi-brassinolide increases C45-C55 polyprenols content. We also report decreased transcription of MEP enzymes (besides C45-C55 polyprenols, precursors of numerous isoprenoids, e.g. phytol, carotenoids are derived from this pathway) and genes encoding biosynthesis of medium-chain-length polyprenol enzymes in brassinosteroid perception mutant bri1-116. Taken together, we document that brassinosteroids affect biosynthetic pathway of C45-C55 polyprenols.
PMID: 37948907
Plant Signal Behav , IF:2.247 , 2023 Dec , V18 (1) : P2229957 doi: 10.1080/15592324.2023.2229957
The RGI1-BAK1 module acts as the main receptor-coreceptor pair for regulating primary root gravitropism and meristem activity in response to RGF1 peptide in Arabidopsis.
Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea.; Kumho Life Science Laboratory, Chonnam National University, Gwangju, Korea.; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Korea.
ROOT MERISTEM GROWTH FACTOR1 (RGF1) and its receptors RGF1 INSENSITIVEs (RGIs), a group of leucine-rich repeat receptor kinases, promote primary root meristem activity via a mitogen-activated protein kinase (MPK) signaling cascade and control root gravitropism in Arabidopsis. Genetic analyses and in vitro binding assays have indicated that among five RGIs identified in Arabidopsis, RGI1, RGI2, and RGI3 recognize RGF1 peptides. However, it remains unclear whether the RGF1 peptide is redundantly recognized by these RGIs or mainly by a single RGI in the regulation of primary root meristem activity. In the present study, we analyzed root meristem growth of the rgi1, rgi2, and rgi3 single mutants in response to RGF1 treatment and observed a significantly decreased sensitivity in meristem growth of rgi1 and complete insensitivity in rgi1 rgi2 rgi3 triple mutant compared with the wild type but not in the rgi1 and rgi2 single mutants. We also observed that both root gravitropism and meristem growth in the BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE 1 (bak1) single mutant were insensitive to RGF1 peptide treatment, whereas other serk mutants, such as serk1, serk2, and serk4, were fully sensitive to RGF1 peptide like the wild type. These mutant analyses suggest that RGI1-BAK1 pair acts as the main receptor-coreceptor pair for regulating primary root gravitropism and meristem activity in response to RGF1 peptide in Arabidopsis.
PMID: 37382066
Plant Signal Behav , IF:2.247 , 2023 Dec , V18 (1) : P2186640 doi: 10.1080/15592324.2023.2186640
Exogenous Brassinosteroid Enhances Zinc tolerance by activating the Phenylpropanoid Biosynthesis pathway in Citrullus lanatus L.
College of Resources and Environmental Engineering, Yangzhou Polytechnic College, Yangzhou, China.; Jiangsu Safety & Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou, China.
Zinc (Zn) is an important element in plants, but over-accumulation of Zn is harmful. The phytohormone brassinosteroids (BRs) play a key role in regulating plant growth, development, and response to stress. However, the role of BRs in watermelon (Citrullus lanatus L.) under Zn stress, one of the most important horticultural crops, remains largely unknown. In this study, we revealed that 24-epibrassinolide (EBR), a bioactive BR enhanced Zn tolerance in watermelon plants, which was related to the EBR-induced increase in the fresh weight, chlorophyll content, and net photosynthetic rate (Pn) and decrease in the content of hydrogen peroxide (H(2)O(2)), malondialdehyde (MDA), and Zn in watermelon leaves. Through RNA deep sequencing (RNA-seq), 350 different expressed genes (DEG) were found to be involved in the response to Zn stress after EBR treatment, including 175 up-regulated DEGs and 175 down-regulated DEGs. The up-regulated DEGs were significantly enriched in 'phenylpropanoid biosynthesis' pathway (map00940) using KEGG enrichment analysis. The gene expression levels of PAL, 4CL, CCR, and CCoAOMT, key genes involved in phenylpropanoid pathway, were significantly induced after EBR treatment. In addition, compared with Zn stress alone, EBR treatment significantly promoted the activities of PAL, 4CL, and POD by 30.90%, 20.69%, and 47.28%, respectively, and increased the content of total phenolic compounds, total flavonoids, and lignin by 23.02%, 40.37%, and 29.26%, respectively. The present research indicates that EBR plays an active role in strengthening Zn tolerance, thus providing new insights into the mechanism of BRs enhancing heavy metal tolerance.
PMID: 37083111
Plant Signal Behav , IF:2.247 , 2023 Dec , V18 (1) : P2163337 doi: 10.1080/15592324.2022.2163337
Arabidopsis clathrin adaptor EPSIN1 but not MODIFIED TRANSPORT TO THE VACOULE1 contributes to effective plant immunity against pathogenic Pseudomonas bacteria.
University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA.; Department of Plant Physiology, University of Potsdam, Potsdam, Germany.
In eukaryotes, EPSINs are Epsin N-terminal Homology (ENTH) domain-containing proteins that serve as monomeric clathrin adaptors at the plasma membrane (PM) or the trans-Golgi Network (TGN)/early endosomes (EE). The model plant Arabidopsis thaliana encodes for seven ENTH proteins, of which so far, only AtEPSIN1 (AtEPS1) and MODIFIED TRANSPORT TO THE VACUOLE1 (AtMTV1) localize to the TGN/EE and contribute to cargo trafficking to both the cell surface and the vacuole. However, relatively little is known about role(s) of any plant EPSIN in governing physiological responses. We have recently shown that AtEPS1 is a positive modulator of plant immune signaling and pattern-triggered immunity against flagellated Pseudomonas syringae pv. tomato (Pto) DC3000 bacteria. In eps1 mutants, impaired immune responses correlate with reduced accumulation of the receptor FLAGELLIN SENSING2 (AtFLS2) and the convergent immune co-receptor BRASSINOSTEROID INSENTIVE1-ASSOCIATED RECEPTOR KINASE1 (AtBAK1) in the PM. Here, we report that in contrast to AtEPS1, the TGN/EE-localized AtMTV1 did not contribute significantly to immunity against pathogenic Pto DC3000 bacteria. We also compared the amino acid sequences, peptide motif structures and in silico tertiary structures of the ENTH domains of AtEPS1 and AtMTV1 in more detail. We conclude that despite sharing the classical tertiary alpha helical ENTH-domain structure and clathrin-binding motifs, the overall low amino acid identity and differences in peptide motifs may explain their role(s) in trafficking of some of the same as well as distinct cargo components to their site of function, with the latter potentially contributing to differences in physiological responses.
PMID: 36603596
Plant Commun , 2023 Nov , V4 (6) : P100627 doi: 10.1016/j.xplc.2023.100627
GmBES1-1 dampens the activity of GmNSP1/2 to mediate brassinosteroid inhibition of nodulation in soybean.
Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China; Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou 450046, China; Sanya Institute of Henan University, Sanya 572025, China.; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China; Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou 450046, China; Sanya Institute of Henan University, Sanya 572025, China.; Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China.; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou 450046, China; Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou 450046, China; Sanya Institute of Henan University, Sanya 572025, China. Electronic address: xueluw@henu.edu.cn.
Soybean (Glycine max) forms root nodules to house rhizobial bacteria for biological nitrogen fixation. The development of root nodules is intricately regulated by endogenous and exogenous cues. The phytohormones brassinosteroids (BRs) have been shown to negatively regulate nodulation in soybean, but the underlying genetic and molecular mechanisms remain largely unknown. Here, we performed transcriptomic analyses and revealed that BR signaling negatively regulates nodulation factor (NF) signaling. We found that BR signaling inhibits nodulation through its signaling component GmBES1-1 by dampening NF signaling and nodule formation. In addition, GmBES1-1 can directly interact with both GmNSP1 and GmNSP2 to inhibit their interaction and the DNA-binding activity of GmNSP1. Furthermore, BR-induced nuclear accumulation of GmBES1-1 is essential for inhibiting nodulation. Taken together, our results demonstrate that regulation of GmBES1-1 subcellular localization by BRs plays a key role in the legume-rhizobium symbiosis and plant development, indicating a crosstalk mechanism between phytohormone and symbiosis signaling pathways.
PMID: 37208896